

Mark Scheme (Results)

January 2021

Pearson Edexcel IAL Mathematics Pure Mathematics P4 Paper WMA14/01

Question Number	Scheme	Marks
1(a)	$\left(\frac{1}{4} - 5x\right)^{\frac{1}{2}} = \frac{1}{2}\left(\ldots\right)$	B1
	$= (1 - 20x)^{\frac{1}{2}} = 1 + \left(\frac{1}{2}\right) \times (-20x) + \frac{\left(\frac{1}{2}\right) \times \left(-\frac{1}{2}\right)}{2!} \times (-20x)^{2} + \frac{\left(\frac{1}{2}\right) \times \left(-\frac{1}{2}\right) \times \left(-\frac{3}{2}\right)}{3!} \times (-20x)^{3} \dots$	M1A1
	$= \frac{1}{2} - 5x - 25x^2 - 250x^3 + \dots$	A1 A1
	Special case:	
	If the final answer is left as $\frac{1}{2} \left(1 - 10x - 50x^2 - 500x^3 + \right)$	
	Award SC B1M1A1A1A0	
	Award Se Diwilatatao	(5)
	Alternative by direct expansion	
	$\left(\frac{1}{4} - 5x\right)^{\frac{1}{2}} = \left(\frac{1}{4}\right)^{\frac{1}{2}} + \left(\frac{1}{2}\right)\left(\frac{1}{4}\right)^{-\frac{1}{2}} \left(-5x\right)^{1} + \frac{\frac{1}{2} \times -\frac{1}{2}}{2} \left(\frac{1}{4}\right)^{-\frac{3}{2}} \left(-5x\right)^{2} + \frac{\frac{1}{2} \times -\frac{1}{2} \times -\frac{3}{2}}{3!} \left(\frac{1}{4}\right)^{-\frac{5}{2}} \left(-5x\right)^{3}$	B1M1A1
	$= \frac{1}{2} - 5x - 25x^2 - 250x^3 + \dots$	A1A1
(b)	$\left(\frac{1}{4} - \frac{5}{100}\right)^{\frac{1}{2}} = \left(\frac{1}{5}\right)^{\frac{1}{2}} = \frac{1}{2} - 5 \times \frac{1}{100} - 25\left(\frac{1}{100}\right)^2 - 250\left(\frac{1}{100}\right)^3 + \dots$	
	$\frac{\sqrt{5}}{5} \approx \frac{1789}{4000}$ or $\frac{1}{\sqrt{5}} \approx \frac{1789}{4000}$	M1
	$\Rightarrow \sqrt{5} \approx 5 \times \frac{1789}{4000} \text{ or } \sqrt{5} \approx 1 \div \frac{1789}{4000}$	
	$\sqrt{5} \approx \frac{1789}{800} \text{ or } \frac{4000}{1789}$	A1
		(2)
		(7 marks)

B1: For taking out a factor of $\left(\frac{1}{4}\right)^{\frac{1}{2}}$ or $\frac{1}{2}$ or 0.5 etc.

M1: Expands $(1+kx)^{\frac{1}{2}}$, $k \neq \pm 1$ with the correct structure for the third or fourth term

e.g.
$$\pm \frac{\frac{1}{2}(-\frac{1}{2})}{2!} \times (kx)^2$$
 or $\pm \frac{\frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})}{3!} \times (kx)^3$ with or without the bracket around the kx

A1: For either term three or term four being correct in any form.

E.g.
$$\frac{\frac{1}{2}(\frac{1}{2}-1)}{2!} \times (20x)^2$$
 or $\frac{\frac{1}{2}(\frac{1}{2}-1)}{2!} \times (-20x)^2$ or $\frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!} \times (-20x)^3$ or $-\frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!} \times (20x)^3$

The brackets must be present unless they are implied by subsequent work. This mark is independent of the B mark.

A1: Two terms correct and simplified of $\frac{1}{2} - 5x - 25x^2 - 250x^3$. Allow if any of the '-' signs are written as "+-".

A1: All four terms correct and simplified of $\frac{1}{2} - 5x - 25x^2 - 250x^3$. Allow the terms to be listed.

Ignore any extra terms and apply isw if necessary. If any of the '-' signs are written as "+-" score A0.

Alternative:

B1: For a first term of $\left(\frac{1}{4}\right)^{\frac{1}{2}}$ or $\frac{1}{2}$ or 0.5 etc.

M1: For the correct structure for the third or fourth term. E.g. $\frac{\frac{1}{2} \times -\frac{1}{2}}{2} \left(\frac{1}{4}\right)^{-\frac{3}{2}} (kx)^2$ or $\frac{\frac{1}{2} \times -\frac{1}{2} \times -\frac{3}{2}}{3!} \left(\frac{1}{4}\right)^{-\frac{5}{2}} (kx)^3$ where $k \neq \pm 1$

A1: For either term three or term four being correct in any form.

e.g.
$$\frac{\frac{1}{2}(\frac{1}{2}-1)}{2!} \times (\frac{1}{4})^{\frac{-3}{2}} (-5x)^2$$
 or $\frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!} \times (\frac{1}{4})^{\frac{-5}{2}} (-5x)^3$

The brackets must be present unless they are implied by subsequent work.

A1: Two terms correct and simplified of $\frac{1}{2} - 5x - 25x^2 - 250x^3$. Allow if any of the '-' signs are written as "+-".

A1: All four terms correct and simplified of $\frac{1}{2} - 5x - 25x^2 - 250x^3$. Allow the terms to be listed.

Ignore any extra terms and apply isw if necessary. If any of the '-' signs are written as "+-" score A0.

(b)

M1: Attempts to substitute $x = \frac{1}{100}$ into their part (a) and either multiplies by 5 or finds reciprocal.

A1:
$$(\sqrt{5} =)\frac{1789}{800}$$
 or $\frac{4000}{1789}$

Question Number	Scheme	Marks
2(a)	$\overrightarrow{BA} \cdot \overrightarrow{BC} = -6 \times 2 + 2 \times 5 - 3 \times 8 = (-26)$	M1
	Uses $\overrightarrow{BA}.\overrightarrow{BC} = \left \overrightarrow{BA} \right \left \overrightarrow{BC} \right \cos \theta \Rightarrow -26 = \sqrt{49} \times \sqrt{93} \cos \theta \Rightarrow \theta = \dots$	dM1
	θ = 112.65°	A1
		(3)
(b)	Attempts to use $ \overrightarrow{BA} \overrightarrow{BC} \sin \theta$ with their θ	M1
	Area = $awrt 62.3$	A1
		(2)
		(5 marks)

M1: Attempts the scalar product of $\pm \overrightarrow{AB}$. $\pm \overrightarrow{BC}$ condone slips as long as the intention is clear

Or attempts the vector product $\pm \overrightarrow{AB} \times \pm \overrightarrow{BC}$ (see alternative 1)

Or attempts vector AC (see alternative 2)

dM1: Attempts to use $\pm \overrightarrow{AB}.\overrightarrow{BC} = \left| \overrightarrow{AB} \right| \left| \overrightarrow{BC} \right| \cos \theta$ AND proceeds to a value for θ

Expect to see at least one correct attempted calculation for a modulus.

For example
$$\sqrt{2^2 + 5^2 + 8^2} \left(= \sqrt{93} \right)$$
 or $\sqrt{6^2 + 2^2 + 3^2} \left(= 7 \right)$

Note that we condone poor notation such as: $\cos \theta = \frac{26}{7\sqrt{93}} = 67.35^{\circ}$ Depends on the first mark.

Must be an attempt to find the correct angle.

A1: θ = awrt 112.65° Versions finishing with θ = awrt 67.35° will normally score M1 dM1 A0 Angles given in radians also score A0 (NB θ = 1.9661... or acute 1.1754...)

Allow e.g.
$$\theta = 67.35^{\circ} \Rightarrow \theta = 180 - 67.35^{\circ} = 112.65$$
 and allow $\cos \theta = \frac{26}{7\sqrt{93}} \Rightarrow \theta = 112.65$

1. Alternative using the vector product:

M1: Attempts the vector product
$$\pm \overrightarrow{AB} \times \pm \overrightarrow{BC} = \pm \begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix} \times \pm \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix} = \pm \begin{pmatrix} -31 \\ -42 \\ 34 \end{pmatrix}$$
 condone slips as long as the intention is

clear

dM1: Attempts to use $\pm \overrightarrow{AB} \times \overrightarrow{BC} = \left| \overrightarrow{AB} \right| \left| \overrightarrow{BC} \right| \sin \theta$ AND proceeds to a value for θ

Expect to see at least one correct attempted calculation for a modulus on rhs and attempt at the modulus of the vector product

For example
$$\sqrt{2^2 + 5^2 + 8^2}$$
 or $\sqrt{6^2 + 2^2 + 3^2}$ and $\sqrt{31^2 + 42^2 + 34^2} \left(= \sqrt{3881} \right)$

Note that we condone poor notation such as: $\sin \theta = \frac{\sqrt{3881}}{7\sqrt{93}} = 67.35^{\circ}$ Depends on the first mark.

Must be an attempt to find the correct angle.

A1: $\theta = \text{awrt } 112.65^{\circ}$ Versions finishing with $\theta = \text{awrt } 67.35^{\circ}$ will normally score M1 dM1 A0

2. Alternative using cosine rule:

M1: Attempts $\pm \overrightarrow{AC} = \pm \left(\overrightarrow{AB} + \overrightarrow{BC} \right) = \pm \left(8\mathbf{i} + 3\mathbf{j} + 11\mathbf{k} \right)$ condone slips and poor notation as long as the intention is

clear e.g. allow
$$\begin{pmatrix} 8\mathbf{i} \\ 3\mathbf{j} \\ 11\mathbf{k} \end{pmatrix}$$

dM1: Attempts to use $AC^2 = AB^2 + BC^2 - 2AB.BC\cos\theta$ AND proceeds to a value for θ

Must be an attempt to find the correct angle.

A1: $\theta = \text{awrt } 112.65^{\circ}$

(b)

M1: Attempts to use $|\overrightarrow{AB}| |\overrightarrow{BC}| \sin \theta$ with their θ . You may see $\frac{1}{2} |\overrightarrow{AB}| |\overrightarrow{BC}| \sin \theta$ found first before it is doubled.

or attempts the magnitude of their vector product e.g. $\sqrt{3881}$

A1: Area = awrt 62.3. If this is achieved from an angle of θ = awrt 67.35° full marks can be scored

Note that there are other more convoluted methods for finding the area – score M1 for a complete and correct method using their values and send to review if necessary.

Question Number	Scheme	Marks
3	States the largest odd number and an odd number that is greater E.g. odd number n and $n + 2$	M1
	 Fully correct proof including the assumption: there exists a greatest odd number "n" a correct statement that their second odd number is greater than their assumed greatest odd number a minimal conclusion " this is a contradiction, hence proven" You can ignore any spurious information e.g. n > 0, n + 2 > 0 etc. 	A1*
		(2)
		(2 marks)

M1: For starting the proof by **stating** an odd number and a larger odd number.

Examples of an allowable start are

- **odd number** "n" with "n + 2"
- odd number "n" with " n^2 "
- "2k + 1" with "2k + 3"
- "2k + 1" with " $(2k + 1)^3$ "
- "2k + 1" with "2k + 1 + 2k"

Note that stating n = 2k, even when accompanied by the statement that "n" is odd is M0

A1*: A fully correct proof using contradiction

This must consist of

- 1) An assumption E.g. "(Assume that) there exists a greatest odd number n" "Let "2k + 1" be the greatest odd number"
- 2) A minimal statement showing their second number is greater than the first,

E.g. If "n" is odd and "
$$n + 2$$
" is greater than n

If "n" is odd and $n^2 > n$

$$2k + 3 > 2k + 1$$

$$2k + 2k + 1 > 2k + 1$$

Any algebra (e.g. expansions) must be correct. So $(2k+1)^2 = 4k^2 + 2k + 1$ would be A0

3) A minimal conclusion which could be

"hence there is no greatest odd number", "hence proven", or simply ✓

Question Number	Scheme	Marks
4(a)	k=2 or x>2	B1
	$t = \frac{1}{x - 2} \Rightarrow y = \frac{1 - \frac{2}{x - 2}}{3 + \frac{1}{x - 2}}$	M1 A1
	$\frac{1 - \frac{2}{x - 2}}{3 + \frac{1}{x - 2}} = \frac{x - 2 - 2}{\dots} \text{or} \frac{\dots}{3(x - 2) + 1}$	A1 (M1 on EPEN)
	$y = \frac{x-4}{3x-5}$	A1
		(5)
(b)	$-2 < g < \frac{1}{3}$	M1 A1
		(2)
		(7
		marks)

B1: States that k = 2 or else states that the domain is x > 2. Must be seen in part (a).

M1: Attempts to find t in terms of x and substitutes into y.

Condone poor attempts but you should expect to see t = f(x) found from $x = \frac{1}{t} + 2$ substituted into

$$y = \frac{1-2t}{3+t}$$
 condoning slips.

A1: A correct unsimplified equation involving just x and y

A1(M1 on EPEN): Correct numerator or denominator with fraction removed (allow unsimplified)

A1:
$$y = \frac{x-4}{3x-5}$$
 or $g(x) = \frac{x-4}{3x-5}$ (must be $y = \dots$ or $g(x) = \dots$ but allow this mark as long as the $y = \dots$ or $g(x) = \dots$ is present at some point)

Alternative 1 for part (a)

M1: Assume $g(x) = \frac{ax+b}{cx+d}$ and substitute in $x = \frac{1}{t} + 2$

A1:
$$g(x) = \frac{a + (b + 2a)t}{c + (d + 2c)t}$$

A1(M1 on EPEN): Correct numerator or denominator

A1:
$$y = \frac{x-4}{3x-5}$$
 or $g(x) = \frac{x-4}{3x-5}$ (must be $y = \dots$ or $g(x) = \dots$ but allow this mark as long as the $y = \dots$ or $g(x) = \dots$ is present at some point)

Alternative 2 for part (a)

M1: Attempts to find *t* in terms of *y* and substitutes into *x*.

Condone poor attempts but you should expect to see t = f(y) found from $y = \frac{1-2t}{3+t}$ substituted into

$$x = \frac{1}{t} + 2$$
 condoning slips. (NB $t = \frac{1 - 3y}{y + 2} \Rightarrow x = \frac{y + 2}{1 - 3y} + 2$)

A1: A correct unsimplified equation involving just x and y

A1(M1 on EPEN): Correct numerator or denominator

A1: $y = \frac{x-4}{3x-5}$ or $g(x) = \frac{x-4}{3x-5}$ (must be $y = \dots$ or $g(x) = \dots$ but allow this mark as long as the $y = \dots$ or $g(x) = \dots$ is present at some point)

(b)

M1: For obtaining one of the 2 boundaries (just look for values) e.g. -2 or $\frac{1}{3}$ or for attempting g(2) for their g or for attempting $\frac{\text{their } a}{\text{their } c}$. Note that for this mark they must be attempting values of y (or g(x)).

A1: Correct range: Allow $-2 < g < \frac{1}{3}, -2 < g(x) < \frac{1}{3}, -2 < y < \frac{1}{3}, \left(-2, \frac{1}{3}\right), g > -2 \text{ and } g < \frac{1}{3}$

Question Number	Scheme	Marks
5	$u = 3 + \sqrt{2x - 1} \Rightarrow x = \frac{(u - 3)^2 + 1}{2} \Rightarrow \frac{dx}{du} = u - 3$	
	or	M1 A1
	$u = 3 + \sqrt{2x - 1} \Rightarrow \frac{du}{dx} = \frac{1}{2} (2x - 1)^{-\frac{1}{2}} \times 2 = \frac{1}{\sqrt{2x - 1}} = \frac{1}{u - 3}$	
	$\int \frac{4}{3+\sqrt{2x-1}} dx = \int \frac{4}{u} \times (u-3) du$	M1
	$\int \frac{4}{u} \times (u-3) \mathrm{d}u = \int \left(4 - \frac{12}{u}\right) \mathrm{d}u$	d M1
	$\int \left(4 - \frac{12}{u}\right) du = 4u - 12 \ln u \text{or} k \left(4u - 12 \ln u\right)$	ddM1 A1ft
	$\int_{1}^{13} \frac{4}{3 + \sqrt{2x - 1}} dx = \left[4u - 12 \ln u \right]_{4}^{8} = \left(4 \times 8 - 12 \ln 8 \right) - \left(4 \times 4 - 12 \ln 4 \right)$	
	or or	M1
	$\int_{1}^{13} \frac{4}{3 + \sqrt{2x - 1}} dx = \left[4\left(3 + \sqrt{2x - 1}\right) - 12\ln\left(3 + \sqrt{2x - 1}\right) \right]_{1}^{13} = \left(4 \times 8 - 12\ln 8\right) - \left(4 \times 4 - 12\ln 4\right)$	
	$=16-12 \ln 2$	A1
<u> </u>		(8 marks)

M1: Differentiates to get $\frac{du}{dx}$ in terms of x and then obtains $\frac{dx}{du}$ in terms of u

Need to see
$$\frac{du}{dx} = k(2x-1)^{-\frac{1}{2}} \rightarrow \frac{du}{dx} = \frac{1}{au+b}$$
 or $\frac{dx}{du} = au+b$

or

Attempts to change the subject of $u = 3 + \sqrt{2x - 1}$ and differentiates to get $\frac{dx}{du}$ in terms of u

Need to see
$$x = \frac{(u \pm 3)^2 \pm 1}{2} \rightarrow \frac{dx}{du} = au + b$$

A1:
$$\frac{dx}{du} = u - 3$$
 oe e.g. $\frac{du}{dx} = \frac{1}{u - 3}$, $du = \frac{dx}{u - 3}$, $dx = (u - 3)du$

M1: Attempts to write the integral completely in terms of u.

Need to see
$$\int \frac{...}{u} \times \text{their} \frac{dx}{du} du$$
 with or without the "du" but **not** e.g. $\int \frac{...}{u} \times \frac{1}{\frac{dx}{du}} du$

dM1: Divides to reach an integral of the form $\int \left(A + B \times \frac{1}{u}\right) du$. **Depends on both previous M's**

dM1: Integrates to a form $Au + B \ln u$. Depends on the previous M. An alternative for the previous 2 marks is to use integration by parts:

E.g.
$$\int \frac{4}{u} \times (u-3) \, du = 4(u-3) \ln u - \int 4 \ln u \, du = 4u \ln u - 12 \ln u - 4u \ln u + 4u = 4u - 12 \ln u$$
 Score dM1 for
$$\int \frac{k}{u} \times (Au+B) \, du = k \left(Au+B\right) \ln u - \int k \ln u \, du \text{ and dM1 for integrating to a form } Au+B \ln u.$$

A1ft: $4u - 12 \ln u$ or $k(4u - 12 \ln u)$ following through on $\frac{dx}{du} = k(u - 3)$ only.

M1: Substitutes 8 and 4 into their $4u - 12 \ln u$ and subtracts **or** substitutes 13 and 1 into their $4u - 12 \ln u$ with $u = 3 + \sqrt{2x - 1}$ and subtracts. This mark depends on there having been an attempt to integrate, however poor.

A1: $16-12 \ln 2$

Question Number	Scheme	Marks
6(a)	$4y^2 + 3x = 6y e^{-2x}$	
	$4y^2 + 3x \rightarrow 8y \frac{\mathrm{d}y}{\mathrm{d}x} + 3$	B1
	$6y e^{-2x} \rightarrow -12y e^{-2x} + 6e^{-2x} \frac{dy}{dx}$	M1 A1
	$8y\frac{dy}{dx} + 3 = -12ye^{-2x} + 6e^{-2x}\frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{12ye^{-2x} + 3}{6e^{-2x} - 8y} \text{ oe}$	M1 A1
		(5)
(b)	Sets $x = 0$ in $4y^2 + 3x = 6y e^{-2x} \Rightarrow y = \frac{3}{2}$ oe	B1
	Substitutes $\left(0, \frac{3}{2}\right)$ in their $\frac{dy}{dx} = \frac{12ye^{-2x} + 3}{6e^{-2x} - 8y} = \left(\frac{7}{-2}\right)$	M1
	$m_N = -1 \div "\frac{7}{-2}" \Rightarrow y = "\frac{2}{7}"x + "\frac{3}{2}"$	dM1
	$y = \frac{2}{7}x + \frac{3}{2}$ oe e.g. $y = \frac{6}{21}x + \frac{3}{2}$	A1
		(4)
		(9 marks)

B1: Differentiates $4y^2 + 3x$ to obtain $8y\frac{dy}{dx} + 3$. Allow unsimplified forms such as $4 \times 2y\frac{dy}{dx} + 3$

M1: Uses the product rule on $6y e^{-2x}$ to obtain an expression of the form $Aye^{-2x} + Be^{-2x} \frac{dy}{dx}$

A1: Differentiates $6y e^{-2x}$ to obtain $-12ye^{-2x} + 6e^{-2x} \frac{dy}{dx}$

M1: Collects two terms in $\frac{dy}{dx}$ (one from attempting to differentiate $4y^2$ and one from attempting to differentiate $6ye^{-2x}$) and proceeds to make $\frac{dy}{dx}$ the subject.

A1:
$$\frac{dy}{dx} = \frac{12ye^{-2x} + 3}{6e^{-2x} - 8y}$$
 or equivalent e.g. $\frac{dy}{dx} = \frac{2e^{-2x} \times 6y + 3}{6e^{-2x} - 8y}$ or $\frac{dy}{dx} = \frac{12y + 3e^{2x}}{6 - 8ye^{2x}}$

You can ignore any spurious " $\frac{dy}{dx}$ =" at the start and allow y' for $\frac{dy}{dx}$.

(b)

B1: Uses x = 0 to obtain $y = \frac{3}{2}$ on e.g. $\frac{6}{4}$ (ignore any reference to y = 0)

M1: Substitutes x = 0 and their y at x = 0 which has come from substituting x = 0 into the original equation into their $\frac{dy}{dx} = \frac{12ye^{-2x} + 3}{6e^{-2x} - 8y}$ to find a numerical value. Working is normally shown here but you may need to check for evidence. Use of x = 0 and y = 0 is M0.

dM1: Uses the negative reciprocal of " $\frac{7}{-2}$ " for the gradient of the normal and uses this and their value of y at

x = 0 to form the equation of the normal. **Depends on the previous M.**

A1:
$$y = \frac{2}{7}x + \frac{3}{2}$$
 oe e.g. $y = \frac{6}{21}x + \frac{6}{4}$

Note that the use of (0, 0) for P will generally lose the final 3 marks in (b)

Question	Scheme	Marks
Number	Scheme	Marks
7(a) Way 1	$\int e^{2x} \sin x dx = \frac{1}{2} e^{2x} \sin x - \int \frac{1}{2} e^{2x} \cos x dx$	M1
	$= \dots -\frac{1}{4}e^{2x}\cos x - \int \frac{1}{4}e^{2x}\sin x dx$	dM1
	$\int e^{2x} \sin x dx = \frac{1}{2} e^{2x} \sin x - \frac{1}{4} e^{2x} \cos x - \int \frac{1}{4} e^{2x} \sin x dx$	A1
	$\frac{5}{4} \int e^{2x} \sin x dx = \frac{1}{2} e^{2x} \sin x - \frac{1}{4} e^{2x} \cos x \Rightarrow \int e^{2x} \sin x dx = \dots$	ddM1
	$= \frac{2}{5}e^{2x}\sin x - \frac{1}{5}e^{2x}\cos x + c$	A1
		(5)
7(a) Way 2	$\int e^{2x} \sin x dx = -e^{2x} \cos x + \int 2e^{2x} \cos x dx$	M1
	$= \dots + 2e^{2x}\sin x - \int 4e^{2x}\sin x dx$	dM1
	$\int e^{2x} \sin x dx = -e^{2x} \cos x + 2e^{2x} \sin x - \int 4e^{2x} \sin x dx$	A1
	$5\int e^{2x} \sin x dx = -e^{2x} \cos x + 2e^{2x} \sin x \Rightarrow \int e^{2x} \sin x dx = \dots$	ddM1
	$= \frac{2}{5}e^{2x}\sin x - \frac{1}{5}e^{2x}\cos x + c$	A1
		(5)
(b)	$\left(\frac{2}{5}e^{2\pi}\sin\pi - \frac{1}{5}e^{2\pi}\cos\pi\right) - \left(\frac{2}{5}e^{0}\sin0 - \frac{1}{5}e^{0}\cos0\right) = \dots$	M1
	$=\frac{1}{5}e^{2\pi}+\frac{1}{5}=\frac{e^{2\pi}+1}{5} *$	A1*
		(2)
		(7 marks)

Note that you can condone the omission of the dx's throughout.

(a) Way 1

M1: Attempts integration by parts with $u = \sin x$ and $v' = e^{2x}$ to obtain

$$\int e^{2x} \sin x \, dx = Ae^{2x} \sin x \pm B \int e^{2x} \cos x \, dx \quad A > 0$$

dM1: Attempts integration by parts again with $u = \cos x$ and $v' = e^{2x}$ on $B \int e^{2x} \cos x \, dx$ to obtain

$$B \int e^{2x} \cos x \, dx = \pm C e^{2x} \cos x \pm D \int e^{2x} \sin x \, dx$$

Depends on the previous mark.

A1: For
$$\int e^{2x} \sin x \, dx = \frac{1}{2} e^{2x} \sin x - \frac{1}{4} e^{2x} \cos x - \int \frac{1}{4} e^{2x} \sin x \, dx$$

Allow unsimplified e.g. $\int e^{2x} \sin x \, dx = \frac{1}{2} e^{2x} \sin x - \left\{ \frac{1}{4} e^{2x} \cos x + \int \frac{1}{4} e^{2x} \sin x \, dx \right\}$

ddM1: Dependent upon having scored both M's.

It is for collecting $\int e^{2x} \sin x \, dx$ terms together and making it the subject of the formula

A1:
$$\int e^{2x} \sin x \, dx = \frac{2}{5} e^{2x} \sin x - \frac{1}{5} e^{2x} \cos x + c$$
 (allow with or without "+ c")

(a) Way 2

M1: Attempts integration by parts with $u = e^{2x}$ and $v' = \sin x$ to obtain

$$\int e^{2x} \sin x \, dx = \pm A e^{2x} \cos x \pm B \int e^{2x} \cos x \, dx$$

dM1: Attempts integration by parts again with $u = e^{2x}$ and $v' = \cos x$ on $B \int e^{2x} \cos x \, dx$ to obtain

$$B \int e^{2x} \cos x \, dx = \pm C e^{2x} \sin x \pm D \int e^{2x} \sin x \, dx$$

Depends on the previous mark.

A1: For
$$\int e^{2x} \sin x \, dx = -e^{2x} \cos x + 2e^{2x} \sin x - \int 4e^{2x} \sin x \, dx$$

Allow unsimplified e.g.
$$\int e^{2x} \sin x \, dx = -e^{2x} \cos x - \left\{ -2e^{2x} \sin x - \int -4e^{2x} \sin x \, dx \right\}$$

ddM1: Dependent upon having scored both M's.

It is for collecting $\int e^{2x} \sin x \, dx$ terms together and making it the subject of the formula

A1:
$$\int e^{2x} \sin x \, dx = \frac{2}{5} e^{2x} \sin x - \frac{1}{5} e^{2x} \cos x + c \text{ (allow with or without "+ c")}$$

(a) Way 3

M1: Attempts integration by parts with $u = \sin x$ and $v' = e^{2x}$ to obtain

$$\int e^{2x} \sin x \, dx = Ae^{2x} \sin x \pm B \int e^{2x} \cos x \, dx \quad A > 0$$

or attempts integration by parts with $u = e^{2x}$ and $v' = \sin x$ to obtain

$$\int e^{2x} \sin x \, dx = \pm A e^{2x} \cos x \pm B \int e^{2x} \cos x \, dx$$

dM1: Attempts integration by parts with $u = \sin x$ and $v' = e^{2x}$ to obtain

$$\int e^{2x} \sin x \, dx = \pm A e^{2x} \sin x \pm B \int e^{2x} \cos x \, dx$$

and attempts integration by parts with $u = e^{2x}$ and $v' = \sin x$ to obtain

$$\int e^{2x} \sin x \, dx = \pm A e^{2x} \cos x \pm B \int e^{2x} \cos x \, dx$$

A1:
$$I_1 = \int e^{2x} \sin x \, dx = \frac{1}{2} e^{2x} \sin x - \int \frac{1}{2} e^{2x} \cos x \, dx$$
 AND $I_2 = \int e^{2x} \sin x \, dx = -e^{2x} \cos x + \int 2e^{2x} \cos x \, dx$

ddM1: E.g.
$$4I_1 + I_2 = 2e^{2x} \sin x - e^{2x} \cos x = 5I \Rightarrow I = \dots$$
 Correct attempt to eliminate $\int e^{2x} \cos x \, dx$ term.

A1:
$$\int e^{2x} \sin x \, dx = \frac{2}{5} e^{2x} \sin x - \frac{1}{5} e^{2x} \cos x + c$$
 (allow with or without "+ c")

(b)

M1: For applying the limits 0 and π to an expression containing at least one term of the form $Ae^{2x} \sin x$ and at least one term of the form $Be^{2x} \cos x$. There must be some evidence that <u>both</u> limits have been used.

A1*: $\frac{e^{2\pi}+1}{5}$ found correctly **from the correct answer in part (a)** via at least one intermediate line

which could be
$$\frac{e^{2\pi}}{5} + \frac{1}{5}$$

Note a correct answer in (a) and evidence of use of the limits 0 and pi followed by $\frac{e^{2\pi}+1}{5}$ with no intermediate line scores M1A0

Number	Scheme	Marks
8	$\begin{pmatrix} -1 \\ 5 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ -5 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ -3 \\ b \end{pmatrix} \Rightarrow \begin{array}{l} -1 + 2\lambda = 2 + 4\mu & (1) \\ 5 - \lambda = -2 - 3\mu & (2) \\ 4 + 5\lambda & = -5 + \mu b & (3) \end{array}$	
	Uses equations (1) and (2) to find either λ or μ e.g. (1) + 2(2) $\Rightarrow \mu =$ or $3(1) + 4(2) \Rightarrow \lambda =$	M1
	Uses equations (1) and (2) to find both λ and μ	dM1
	$\mu = -\frac{11}{2} \text{ and } \lambda = -\frac{19}{2}$ $4 + 5\lambda = -5 + \mu b \Rightarrow 4 + 5 \times -\frac{19}{2} = -5 - \frac{11}{2}b$	A1
	$4+5\lambda = -5 + \mu b \Rightarrow 4+5 \times -\frac{19}{2} = -5 - \frac{11}{2}b$ or	ddM1
	$4 + 5\lambda = -5 + 7\mu \Rightarrow 4 + 5 \times -\frac{19}{2} = -5 - \frac{11}{2} \times 7$	
	$\Rightarrow 11b = 77 \Rightarrow b = 7 \text{ or obtains } -\frac{87}{2} = -\frac{87}{2}$	A1
	States that when $b = 7$, lines intersect or when $b \neq 7$, lines do not intersect Lines are not parallel so when $b \neq 7$ lines are skew. *	A1 Cso
		(6)
-	Alternative assuming $b = 7$:	
	$ \begin{pmatrix} -1 \\ 5 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ -5 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ -3 \\ 7 \end{pmatrix} \Rightarrow \begin{array}{c} -1 + 2\lambda = 2 + 4\mu & (1) \\ 5 - \lambda = -2 - 3\mu & (2) \\ 4 + 5\lambda & = -5 + 7b & (3) $	
	Uses any 2 equations to find either λ or μ	3.54
		M1
	Uses any 2 equations to find both λ and μ	d M1
	Uses any 2 equations to find both λ and μ $\mu = -\frac{11}{2} \text{ and } \lambda = -\frac{19}{2}$	
	$\mu = -\frac{11}{2} \text{ and } \lambda = -\frac{19}{2}$ Checks in the 3 rd equation e.g.	dM1
	$\mu = -\frac{11}{2}$ and $\lambda = -\frac{19}{2}$	dM1
	$\mu = -\frac{11}{2} \text{ and } \lambda = -\frac{19}{2}$ Checks in the 3 rd equation e.g.	dM1
	$\mu = -\frac{11}{2} \text{ and } \lambda = -\frac{19}{2}$ Checks in the 3 rd equation e.g. equation 3: $4 + 5\left(-\frac{19}{2}\right) = -5 + 7\left(-\frac{11}{2}\right) = \dots$	dM1 A1
	$\mu = -\frac{11}{2} \text{ and } \lambda = -\frac{19}{2}$ Checks in the 3 rd equation e.g. $equation 3: 4+5\left(-\frac{19}{2}\right) = -5+7\left(-\frac{11}{2}\right) = \dots$ $equation 1: -1+2\left(-\frac{19}{2}\right) = 2+4\left(-\frac{11}{2}\right) = \dots$	dM1 A1
	$\mu = -\frac{11}{2} \text{ and } \lambda = -\frac{19}{2}$ Checks in the 3 rd equation e.g. $equation 3: 4+5\left(-\frac{19}{2}\right) = -5+7\left(-\frac{11}{2}\right) = \dots$ $equation 1: -1+2\left(-\frac{19}{2}\right) = 2+4\left(-\frac{11}{2}\right) = \dots$ $equation 2: 5-\left(-\frac{19}{2}\right) = -2-3\left(-\frac{11}{2}\right) = \dots$	dM1 A1 ddM1 A1
	$\mu = -\frac{11}{2} \text{ and } \lambda = -\frac{19}{2}$ Checks in the 3 rd equation e.g. $equation 3: 4 + 5\left(-\frac{19}{2}\right) = -5 + 7\left(-\frac{11}{2}\right) =$ $equation 1: -1 + 2\left(-\frac{19}{2}\right) = 2 + 4\left(-\frac{11}{2}\right) =$ $equation 2: 5 - \left(-\frac{19}{2}\right) = -2 - 3\left(-\frac{11}{2}\right) =$ Equation 3: $-\frac{87}{2}$ Equation 1: -20 Equation 2: $\frac{29}{2}$	dM1 A1 ddM1

M1: For attempting to solve equations (1) and (2) to find either λ or μ

dM1: For attempting to solve equations (1) and (2) to find both λ and μ Depends on the first M.

A1:
$$\mu = -\frac{11}{2}$$
 and $\lambda = -\frac{19}{2}$

ddM1: Attempts to solve $4+5\lambda=-5+\mu b$ for their values of λ and μ . Or uses b=7 with their λ and μ in an attempt to show equality. **Depends on both previous M's.**

A1: Achieves (without errors) that they will intersect when b = 7

Note that the previous 3 marks may be scored without explicitly seeing the values of both parameters e.g.

$$\mu = -\frac{11}{2}$$
, (2) $\Rightarrow \lambda = 3\mu + 7 \Rightarrow 4 + 5(3\mu + 7) = -5 + \mu b \Rightarrow b = 7$

A1*:Cso States that when b = 7, lines intersect and since lines are not parallel it shows that when $b \neq 7$ lines are skew.

Alternative:

M1: Uses b = 7 and attempts to solve 2 equations to find **either** λ **or** μ

dM1: For attempting to solve 2 equations to find both λ and μ Depends on the first M.

A1:
$$\mu = -\frac{11}{2}$$
 and $\lambda = -\frac{19}{2}$

ddM1: Attempts to show that the 3rd equation is true for their values of λ and μ

Depends on both previous M's.

A1: Achieves (without errors) that the 3rd equation gives the same values for (or equivalent)

A1*: Cso States that when b = 7, lines intersect and since lines are not parallel it shows that when $b \neq 7$ lines are skew.

To score the final mark there must be some statement that the lines intersect (or equivalent e.g. meet at a point, cross, etc.) when b = 7 or that they do not intersect if $b \ne 7$ and that the lines are not parallel which may appear anywhere (reason not needed but may be present) so lines are skew when $b \ne 7$.

Ignore any work attempting to show that the lines are perpendicular or not.

Question Number	Scheme	Marks
9(a)	$\tan \theta = \sqrt{3} \Rightarrow k = \frac{\pi}{3} (\text{or } 60^{\circ}) \text{ (Allow } x = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3} (\text{or } 60^{\circ}))$	B1
	$V = (\pi) \int y^2 dx = (\pi) \int (2\sin 2\theta)^2 \sec^2 \theta d\theta \text{ oe}$	M1A1
	$4(\pi)\int \sin^2 2\theta \sec^2 \theta \ d\theta = 4(\pi)\int 4\sin^2 \theta \cos^2 \theta \times \frac{1}{\cos^2 \theta} \ d\theta$	dM1
	= $16(\pi) \int \sin^2 \theta d\theta$ oe e.g. $16(\pi) \int (1 - \cos^2 \theta) d\theta$	A1
	$\sin^2 \theta = \frac{1 - \cos 2\theta}{2} \Rightarrow 16(\pi) \int \sin^2 \theta \ d\theta = 16(\pi) \int \frac{1 - \cos 2\theta}{2} \ d\theta$	d M1
	Volume = $\int_0^{\frac{\pi}{3}} 8\pi (1 - \cos 2\theta) d\theta$	A1 Cso
		(7)
(b)	$\int (1-\cos 2\theta) d\theta \to \theta - \frac{\sin 2\theta}{2}$	B1
	Volume = $\int_{0}^{\frac{\pi}{3}} 8\pi (1 - \cos 2\theta) d\theta = [8\pi\theta - 4\pi \sin 2\theta]_{0}^{\frac{\pi}{3}} = \frac{8}{3}\pi^{2} - 2\sqrt{3}\pi$	M1 A1
		(3)
1		(10 marks)

B1: States or uses $\tan \theta = \sqrt{3} \Rightarrow k = \frac{\pi}{3}$ (Allow 60° here). May be implied by their integral. Allow if seen anywhere in the question either stated or used as their upper limit.

M1: Attempts volume = $(A\pi)\int y^2 dx = (A\pi)\int (2\sin 2\theta)^2 \sec^2 \theta d\theta$ with or without π or " $d\theta$ ".

Condone bracketing errors

A1: For a volume of $(A\pi) \int (2\sin 2\theta)^2 \sec^2 \theta \, d\theta$ with or without π or " $d\theta$ ". The brackets must be present but may be implied by subsequent work.

dM1: Uses $\sin 2\theta = 2\sin \theta \cos \theta$ and proceeds to Volume = $B \int \sin^2 \theta \ d\theta$ with or without " $d\theta$ ". (No requirement for limits yet). Note that if $(2\sin 2\theta)^2$ becomes $2\sin^2 \theta \cos^2 \theta$ with no evidence of a correct identity then score dM0 **Depends on the first M.**

A1: Volume = $(A\pi)\int 16\sin^2\theta \ d\theta$ oe e.g. $(A\pi)\int 16(1-\cos^2\theta) d\theta$ with or without π or " $d\theta$ ". (No requirement for limits yet)

dM1: Attempts to use $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$ or $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$ and obtains Volume $= \int (P \pm Q \cos 2\theta) d\theta$

Depends on the first M.

A1: CSO $\int_0^{\frac{\pi}{3}} 8\pi (1-\cos 2\theta) d\theta$. Fully correct integral with both limits and the " $d\theta$ " but the 8 and/or the π can be either side of the integral sign.

Note this alternative solution for part (a):

$$V = (A\pi) \int y^2 dx = (A\pi) \int (2\sin 2\theta)^2 \sec^2 \theta \ d\theta = (A\pi) \int \frac{4\sin^2 2\theta}{\cos^2 \theta} \ d\theta$$
 M1 A1 as above
$$= (A\pi) \int \frac{4\sin^2 2\theta}{\frac{1}{2}(1+\cos 2\theta)} \ d\theta$$

dM1: uses $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$ in the denominator. **A1:** Correct integral

$$=8(A\pi)\int \frac{1-\cos^2 2\theta}{1+\cos 2\theta} d\theta = 8(A\pi)\int \frac{(1+\cos 2\theta)(1-\cos 2\theta)}{1+\cos 2\theta} d\theta$$

dM1: Uses $\sin^2 2\theta = 1 - \cos^2 2\theta$ and the difference of 2 squares in the numerator and cancels

Volume =
$$\int_{0}^{\frac{\pi}{3}} 8\pi (1-\cos 2\theta) d\theta$$
 A1 CSO

Note that a Cartesian approach in part (a) essentially follows the main scheme e.g.

$$V = (\pi) \int y^2 dx = (A\pi) \int (4x \cos^2 \theta)^2 \sec^2 \theta d\theta = 4(A\pi) \int 4\sin^2 \theta \cos^2 \theta \times \frac{1}{\cos^2 \theta} d\theta \text{ etc.}$$

If in doubt whether such attempts deserve credit send to review.

(b)

B1: States or uses
$$\int (1-\cos 2\theta) d\theta \to \theta - \frac{\sin 2\theta}{2}$$

M1: Volume =
$$\int_0^{\frac{\pi}{3}} p(1-\cos 2\theta) d\theta = \left[p\theta \pm kp \sin 2\theta\right]_0^{\frac{\pi}{3}} \text{ and uses the limit } \frac{\pi}{3} \text{ (not 60°)}.$$

(The limit of 0 may not be seen)

A1:
$$\frac{8}{3}\pi^2 - 2\sqrt{3}\pi$$
 oe e.g. $8\pi \left(\frac{\pi}{3} - \frac{\sqrt{3}}{4}\right)\frac{8}{3}$, $\pi^2 - 2\sqrt{3}\pi$, $\frac{2\pi}{3}\left(4\pi - 3\sqrt{3}\right)$, $\frac{8\pi^2 - 6\sqrt{3}\pi}{3}$

Question Number	Scheme	Marks
10(a)	$\frac{1}{(H-5)(H+3)} = \frac{A}{H-5} + \frac{B}{H+3} \Rightarrow A = \dots \text{ or } B = \dots$	M1
	$A = \frac{1}{8} \text{ or } B = -\frac{1}{8}$	A1
	$\frac{1}{(H-5)(H+3)} = \frac{1}{8(H-5)} - \frac{1}{8(H+3)} \text{ or } \frac{\frac{1}{8}}{(H-5)} - \frac{\frac{1}{8}}{(H+3)} \text{ or } \frac{\frac{1}{8}}{(H+3)} + \frac{-\frac{1}{8}}{(H+3)}$	A1
	or $\frac{1}{8H-40} - \frac{1}{8H+24}$	
		(3)
(b)	$\frac{dH}{dt} = -\frac{(H-5)(H+3)}{40}$ $\int \frac{40}{(H-5)(H+3)} dH = \int -1 dt \text{ or e.g. } \int \frac{1}{(H-5)(H+3)} dH = \int -\frac{1}{40} dt$ $\int \frac{5}{(H-5)} - \frac{5}{(H+3)} dH = \int -1 dt \text{ or e.g. } \frac{1}{8} \int \frac{1}{(H-5)} - \frac{1}{(H+3)} dH = \int -\frac{1}{40} dt$	M1
	$5 \ln H - 5 - 5 \ln H + 3 = -t(+c)$ oe e.g. $\frac{1}{8} \ln H - 5 - \frac{1}{8} \ln H + 3 = -\frac{1}{40} t(+c)$ Or e.g. $5 \ln (8H - 40) - 5 \ln (8H + 24) = -t(+c)$ etc.	M1 A1ft
	Substitutes $t = 0, H = 13 \Rightarrow c =$ Note that this may happen at a later stage e.g. may attempt to remove logs and then substitute to find the constant	M1
	$5\ln H-5 -5\ln H+3 = -t+5\ln\left(\frac{1}{2}\right) \text{ oe e.g.}$ $\frac{1}{8}\ln H-5 -\frac{1}{8}\ln H+3 = -\frac{1}{40}t + \frac{1}{8}\ln\left(\frac{1}{2}\right)$	A1
	$5\ln\left(2\left \frac{H-5}{H+3}\right \right) = -t \Rightarrow \frac{H-5}{H+3} = \frac{1}{2}e^{-0.2t} \Rightarrow H = \dots$	dddM1
	$H = \frac{10 + 3e^{-0.2t}}{2 - e^{-0.2t}} *$	A1*
		(7)
(c)	Sets $\frac{10+3e^{-0.2t}}{2-e^{-0.2t}} = 8 \Rightarrow e^{-0.2t} = \left(\frac{6}{11}\right)$	M1
	$\Rightarrow t = -5\ln\left(\frac{6}{11}\right) = \text{ awrt } 3.03 \text{ days}$	d M1 A1
		(3)
(d)	k = 5	B1
		(1)
		(14 marks)

M1: Attempts any correct method to find either constant. It is implied by one correct constant

A1: One correct constant

A1: Correct partial fractions: $\frac{1}{8(H-5)} - \frac{1}{8(H+3)}$. Note that this mark is not just for the correct constants, it is for the

correctly stated fractions either in part (a) or used in part (b). Allow 0.125 for 1/8.

M1: Separates the variables and uses part (a) to reach: $\int \frac{P}{(H-5)} + \frac{Q}{(H+3)} dH = \int \pm k \, dt$ with or without the integral signs

M1: Attempts to integrate both sides to reach: $\alpha \ln |H - 5| + \beta \ln |H + 3| = kt$ or e.g. $\alpha \ln |8H - 40| + \beta \ln |8H + 24| = kt$ Condone $| | \leftrightarrow ()$ and condone the omission of brackets e.g. allow $\alpha \ln H - 5 + \beta \ln H + 3 = kt$ or e.g. $\alpha \ln 8H - 40 + \beta \ln 8H + 24 = kt$

A1ft: Correct integration of both sides following through on their PF in (a). Condone $| \leftrightarrow ($) and condone the omission of +c but brackets must be present unless they are implied by subsequent work.

Also follow through on a MR of $\frac{dH}{dt} = \frac{(H-5)(H+3)}{40}$ for $\frac{dH}{dt} = -\frac{(H-5)(H+3)}{40}$

E.g. obtains $\frac{1}{9} \ln |H - 5| - \frac{1}{9} \ln |H + 3| = \frac{1}{40} t (+c)$

M1: Substitutes $t = 0, H = 13 \Rightarrow c = ...$ For this to be scored there must have been a + c and depends on some attempt at integration of both sides however poor.

Alternatively attempts $\begin{bmatrix} \frac{1}{(H-5)} - \frac{1}{(H+3)} dH = \begin{bmatrix} -\frac{1}{5} dt \Rightarrow \left[\ln \frac{H-5}{H+3} \right]_{12}^{H} = \left[-\frac{1}{5} \right]_{0}^{T} \Rightarrow \ln \frac{H-5}{H+3} - \ln \frac{1}{2} = -\frac{1}{5}t \end{bmatrix}$

A1: For a correct equation in H and t. Condone $\mid \longleftrightarrow ($) but brackets must be present unless they are implied by subsequent work.

dddM1: A correct attempt to make H the subject of the formula. All previous M's in (b) must have been scored.

A1*: $H = \frac{10 + 3e^{-0.2t}}{2 - e^{-0.2t}}$ cso with sufficient working shown and no errors.

Note that marks in (b) may need to be awarded retrospectively:

E.g. First 3 marks gained to reach $\ln |H-5| - \ln |H+3| = -\frac{1}{5}t + c$ and then:

$$\ln \frac{H-5}{H+3} = -\frac{1}{5}t + c \Rightarrow \frac{H-5}{H+3} = Ae^{-0.2t} \Rightarrow H = \frac{5+3Ae^{-0.2t}}{1-Ae^{-0.2t}}$$

$$H = 13, t = 0 \Rightarrow 13 = \frac{5+3A}{1-A} \Rightarrow A = \frac{1}{2} \Rightarrow H = \frac{5+\frac{3}{2}e^{-0.2t}}{1-\frac{1}{2}e^{-0.2t}} = \frac{10+3e^{-0.2t}}{2-e^{-0.2t}} *$$

The M3 can be awarded when they attempt to find "A", the dddM4 can be awarded for a correct attempt to make H the subject and then A2 and A3 can be awarded together at the end.

(c)

(b)

M1: Sets $\frac{10+3e^{-0.2t}}{2e^{-0.2t}} = 8$ or possibly an earlier version of H or possibly their t in terms of H and reaches $Ae^{\pm 0.2t} = p, \quad p > 0$

dM1: Correct processing of an equation of the form $Ae^{\pm 0.2t} = p$ with correct log work leading to t = ...

Depends on the first M.

A1:
$$t = -5 \ln \left(\frac{6}{11} \right)$$
 or $t = 5 \ln \left(\frac{11}{6} \right)$ or awrt 3.03 (days)

(d)

B1:
$$k = 5$$
 (Allow $H = 5$ or just "5")